仮説検定

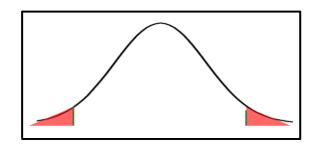
1 カイ二乗検定

2 t 検定 後半

3 回帰分析

「前回」は

「両側検定」



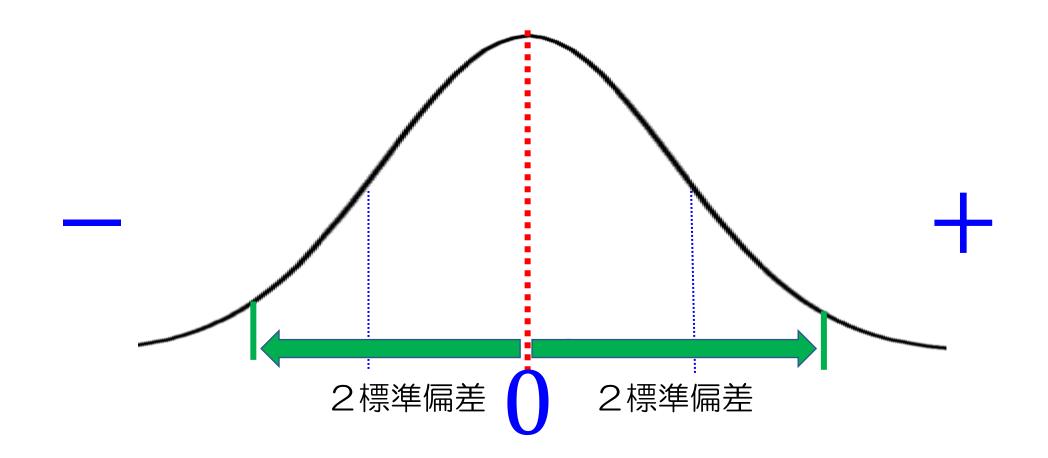
ある値が<u>基準値と異なるか</u> を調べたいとき

どちらの方向に値がずれているか、

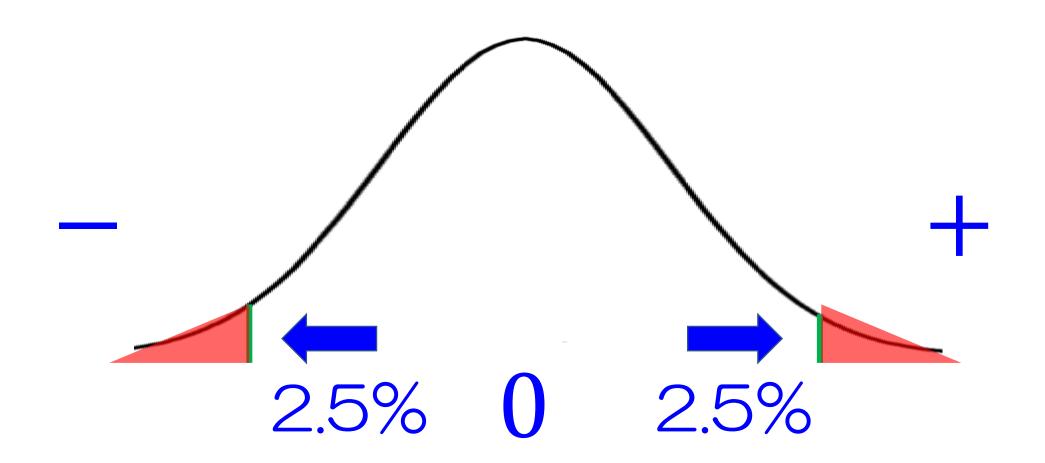
<u>両方の可能性</u>を考えたいとき!

「正規分布と標準偏差」

平均値 ± 2標準偏差(面積)の中に データの「95%」がある

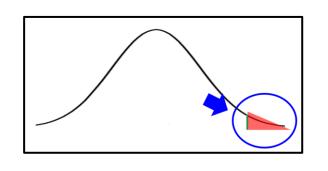


両側:ここの面積が「5%」



今回はこのパターン!

「片側検定」

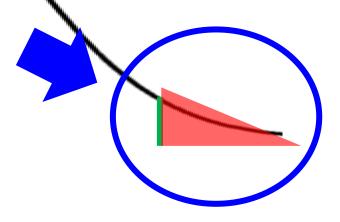


ある値が<u>基準値よりも大きいか</u> を調べたいとき

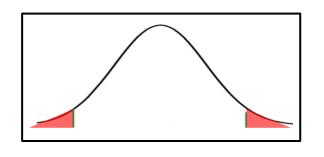
両側:ここの面積が 「5%」

片側検定では 有意水準を2倍にしないとだめ

(そのままやると有意水準2.5%になってしまう)

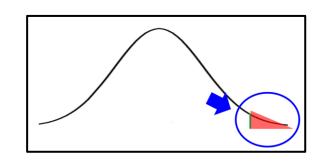


「両側検定」



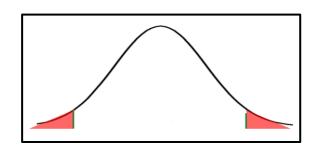
ある値が<u>基準値と異なるか</u> を調べたいとき

「片側検定」



ある値が<u>基準値よりも大きいか</u> を調べたいとき

「両側検定」

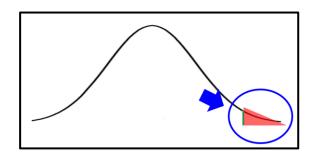


ある値が<u>基準値と異なるか</u> を調べたいとき

どちらの方向に値がずれているか、

<u>両方の可能性</u>を考えたいとき!

「片側検定」



ある値が基準値よりも大きいか

を調べたいとき

(「小さいか」もありやで)

特定の方向に値がずれているか、

一方向だけの可能性を考えたいとき!

話は「両側」「片側」に戻って

例えば

「日給が30000円と仮定」(H₀)すると 対立仮説(H₁)は3通りできる

- 1 日給は3000円でない
- 2 日給は30000円より少ない
- 3 日給は30000円より多い

- 1 日給は30000円でない
- 2 日給は30000円より少ない
- 3 日給は30000円より多い

日給が「30000円」かどうかだけで30000円より多いか少ないかは、

全く関係ない!

「両側検定」

1 日給は30000円でない

これが「両側検定」

どっちに入ってもいい

(多い少ないは全く考えない)

これが前回やったやつ

0

- 1 日給は30000円でない
- 2 日給は30000円より少ない
- 3 日給は30000円より多い

「3000円」より少ないかを調べるだけで3000円より多いかは、

全く考えない

- 1 日給は30000円でない
- 2 日給は30000円より少ない
- 3 日給は30000円より多い

「3000円」より多いかを調べるだけで3000円より少ないかは、

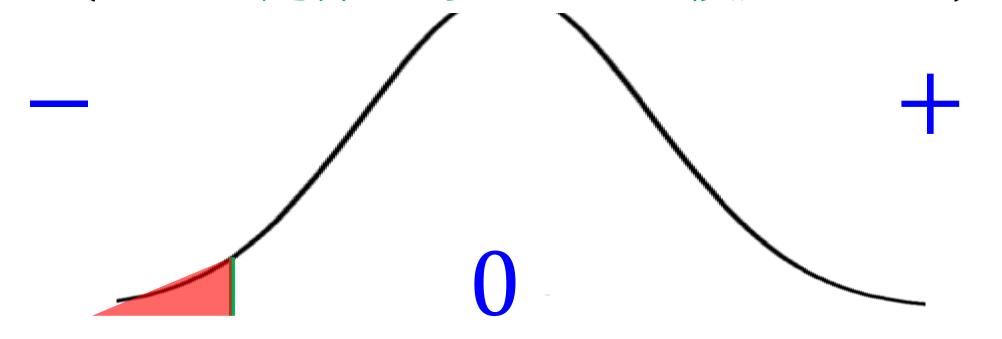
全く考えない

「片側検定」 2 日給は30000円より少ない

これが「片側検定」

マイナスの領域に入ればいい

(大小の関係があることを検定したい)

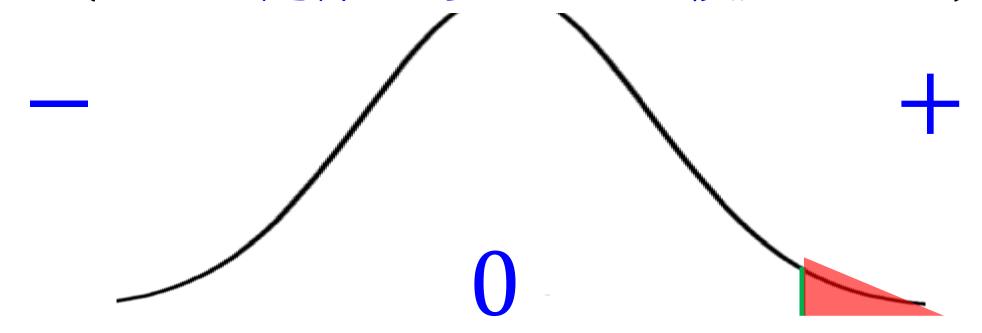


「片側検定」 3 日給は30000円より多い

これが「片側検定」

プラスの領域に入ればいい

(大小の関係があることを検定したい)



「両側検定」?

「片側検定」?

今回は

「片側検定」やってみよう!

「t検定」のパターン

1 1つのデータしかないが(母集団の平均はわかってる)

2 2つのデータがある

前回は「母集団の平均がわかってた」

(日給30000円とか、容量350m1とか)

母集団の平均との比較

今度は「2つのデータの平均の比較」

やる流れは全く一緒

t 検定の流れ

- 1 「両側」か「片側」かを決める
- 2 仮説を立てる (H_0H_1)
- 3 有意水準を決める(普通は0.05)
- 4 t値(絶対値)を求める
- 5 t値の境界値を求める
- 6 t値とt値の境界値から判断する

前回の流れに追加の新しい考え

1 「対応のあるデータ」か 「対応のないデータ」か

2 片側検定の大小の判断

前回の流れに追加の新しい考え

1 「対応のあるデータ」か 「対応のないデータ」か

2 片側検定の大小の判断

同じ対象で2回計測したデータの比較など

- ・同じ物を条件を変えて撮像
- ・同じ人で投薬前後の血圧

「対応のないデータ」

全く関係のない対象で2つの比較など

- 2つの集団からの標本の平均
- JRと地下鉄の遅延時間

同じ対象で2回計測したデータの比較など

- ・同じ物を条件を変えて撮像
- ・同じ人で投薬前後の血圧

今までと

<u>同じやりかたで進めてOK!</u>

同じ対象で2回

計測したデータの比較

同じ人で

投薬前後の血圧

血圧は下がった

と言える?

患者No	投与前	投与後	
1	150	129	
2	146	135	
3	152	149	
4	139	125	
5	149	141	
6	137	135	
7	141	137	
8	152	140	
9	141	126	
10	138	134	

- t 検定の流れ
 - 1 「両側」か「片側」かを決める
 - 2 仮説を立てる (H_0H_1)
 - 3 有意水準を決める(普通は0.05)
 - 4 t値(絶対値)を求める
 - 5 t値の境界値を求める
 - 6 t値とt値の境界値から判断する

今回は「血圧の大小について検定」だから 「片側検定」

H₀:投薬前後で差はなかった

 H_1 : 投薬前後で血圧が下がった

t 検定の流れ

- 1 「両側」か「片側」かを決める
- 2 仮説を立てる (H_0H_1)
- 3 有意水準を決める(普通は0.05)
- 4 t値(絶対値)を求める
- 5 t値の境界値を求める
- 6 t値とt値の境界値から判断する

「t検定:一対の標本による平均の検定」

t-検定: 一対の標本による平均の検定ツール		
	変数 1	変数 2
平均	144.5	135.1
分散	35.38889	53.21111
観測数	10	10
ピアソン相関	0.569709	
仮説平均との差異	0	
自由度	9	
t	4.750411	
P(T<=t) 片側	0.000522	
t 境界値 片側	1.833113	
P(T<=t) 両側	0.001044	
t 境界値 両側	2.262157	

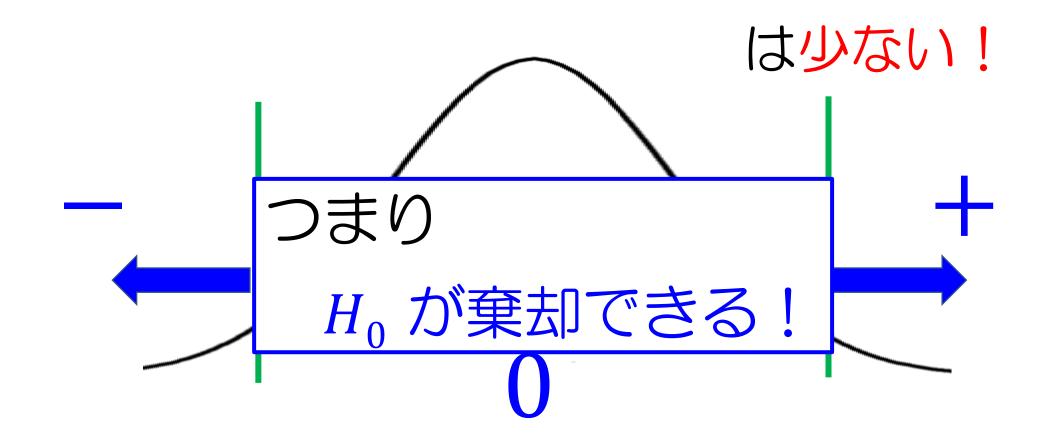
t 検定の流れ

- 1 「両側」か「片側」かを決める
- 2 仮説を立てる (H_0H_1)
- 3 有意水準を決める(普通は0.05)
- 4 t値(絶対値)を求める
- 5 t値の境界値を求める
- 6 t値とt値の境界値から判断する

t-検定: 一対の標本による平均の検定ツール		
	変数 1	変数 2
平均	144.5	135.1
分散	35.38889	53.21111
観測数	10	10
ピアソン相関	0.569709	
仮説平均との差異	0	
自由度	9	
t	4.750411	
P(T<=t) 片側	0.000522	
t 境界値 片側	1.833113	
P(T<=t) 両側	0.001044	
t 境界値 両側	2.262157	

「t値の境界値」

境界値より外側(t値が大きい)と 間違ってデータがここに入る確率



「t値とt値の境界値」の比較

t値の境界値と比べて

t値(絶対値)が大きい

H₀:投薬前後で差はなかった

 H_1 : 投薬前後で血圧が下がった

もうひとつの見方

t-検定: 一対の標本による平均の検定ツール		
	変数 1	変数 2
平均	144.5	135.1
分散	35.38889	53.21111
観測数	10	10
ピアソン相関	0.569709	
仮説平均との差異	0	
自由度	9	
t	4.750411	
P(T<=t) 片側	0.000522	
t 境界値 片側	1.833113	
P(T<=t) 両側	0.001044	
t 境界値 両側	2.262157	

「P(T<=t)片側とα値」の比較

「P(T<=t)片側」とα値(有意水準)

を比べる

「P(T<=t)片側」の方が

大きい: Hoが棄却できない

小さい:H₀が棄却できる

t-検定: 一対の標本による平均の検定ツール		
	変数 1	変数 2
平均	144.5	135.1
分散	35.38889	53.21111
観測数	10	10
ピアソン相関	0.569709	
仮説平均との差異	0	
自由度	9	
t	4.750411	
P(T<=t) 片側	0.000522	
t 境界值 片側	1.833113	
P(T<=t) 両側	0.001044	
t 境界值 両側	2.262157	

「P(T<=t)片側とα値」の比較

「P(T<=t) 片側」のほうが α値(有意水準)より小さい

H₀:投薬前後で差はなかった

 H_1 : 投薬前後で血圧が下がった

問題やってみよう!

「医療統計 7回目 Excel」

問題1

あるダイエット法の効果を調べるために

10人の被験者で調査した。

このダイエット法は効果がある?

この結果を有意水準5%の t 検定によっ

て検定して下さい。

問題2

「お菓子を食べたほうが良いのか」

「水を飲んだほうが良いのか」

テスト前にどうするべきか t 検定!

仮説検定

1 カイ二乗検定

2 t 検定 2

3 回帰分析

「対応のあるデータ」

同じ対象で2回計測したデータの比較など

- ・同じ物を条件を変えて撮像
- ・同じ人で投薬前後の血圧

「対応のないデータ」

全く関係のない対象で2つの比較など

- 2つの集団からの標本の平均
- JRと地下鉄の遅延時間

今までは

等分散:ばらつきが等しい

「母集団が等分散である」と仮定

して検定してた

「対応のないデータ」

全く関係のない対象で2つの比較など

- 2つの集団からの標本の平均
- JRと地下鉄の遅延時間

「対応のないデータ」

全く関係のない対象で2つの比較

• 2つの集団からの標本の平均

関係のない対象だから

「等分散である」かわからない!

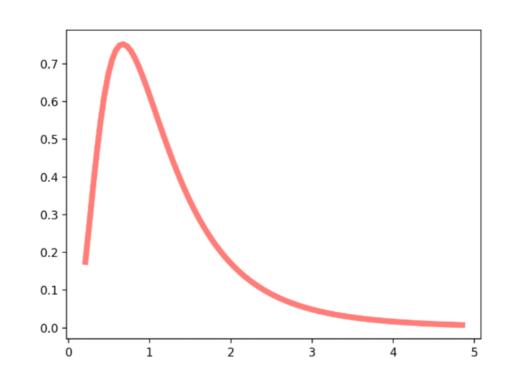
まず、等分散かどうか調べる必要がある!

「F検定」

全く関係のない母集団が

等分散かどうか調べる検定

等分散:ばらつきが等しい



こんな分布になるけど 別に知らなくていい!

「F検定」

JR	地下鉄
19.3	23.4
25.1	22.6
15.9	17.4
21.5	15.7
20.5	20.9
18.8	18.1
16.9	16.2

JRと地下鉄の

遅延時間に

差はあるのか

「データ分析」

「F検定」から

こんなのが出るはず

F-検定: 2 標本を使った分散の検定		
	変数 1	変数 2
平均	19.71428571	19.18571429
分散	9.381428571	9.631428571
観測数	7	7
自由度	6	6
観測された分散比	0.974043311	
P(F<=f) 片側	0.487674236	
F 境界値 片側	0.233434021	

見るのはココ!

F-検定: 2 標本を使った分散の検定		
	変数 1	変数 2
平均	19.71428571	19.18571429
分散	9.381428571	9.631428571
観測数	7	7
自由度	6	6
観測された分散比	0.974043311	
P(F<=f) 片側	0.487674236	
F 境界値 片側	0.233434021	

「F検定」

「P(F<=f)片側」とα値(有意水準)

を比べる

「P(F<=f) 片側」の方が

大きい:分散が等しい

小さい:分散は等しくない

F-検定: 2 標本を	使った分散の検定			
			変数 1	変数 2
平均		1	9.71428571	19.18571429
分散		С	.381428571	9.631428571
観測数	$\alpha = 0.05$		7	7
自由度	α 0.00		6	6
観測された分散と	Ł	C	0.974043311	
P(F<=f) 片側		C	.487674236	
F 境界值 片側		C	0.233434021	

この2つは等分散であると言える

「F検定」

F検定の結果

データに対応がなく、等分散と仮定できる

⇒ スチューデントの t 検定

データに対応がなく、<u>等分散と仮定できない</u>

⇒ ウェルチの t 検定

最近は、どっちにしろ「ウェルチの t 検定」 でいいんじゃない?って説もある

ここから「t検定」をスタート

- t 検定の流れ
 - 1 「両側」か「片側」かを決める
 - 2 仮説を立てる (H_0H_1)
 - 3 有意水準を決める(普通は0.05)
 - 4 t値(絶対値)を求める
 - 5 t値の境界値を求める
 - 6 t値とt値の境界値から判断する

今回は「遅延時間に差があるのか検定」

「両側検定」

 H_0 :遅延時間に差がない

H₁:遅延時間に差がある

t 検定の流れ

- 1 「両側」か「片側」かを決める
- 2 仮説を立てる (H_0H_1)
- 3 有意水準を決める(普通は0.05)
- 4 t値(絶対値)を求める
- 5 t値の境界値を求める
- 6 t値とt値の境界値から判断する

「対応のあるデータ」

「t検定:等分散を仮定した平均の検定」

t-検定: 等分散を仮定した 2 標本による検定		
	変数 1	変数 2
平均	19.71428571	19.18571429
分散	9.381428571	9.631428571
観測数	7	7
プールされた分散	9.506428571	
仮説平均との差異	0	
自由度	12	
t	0.320722192	
P(T<=t) 片側	0.376968679	
t 境界値 片側	1.782287556	
P(T<=t) 両側	0.753937358	
t 境界値 両側	2.17881283	

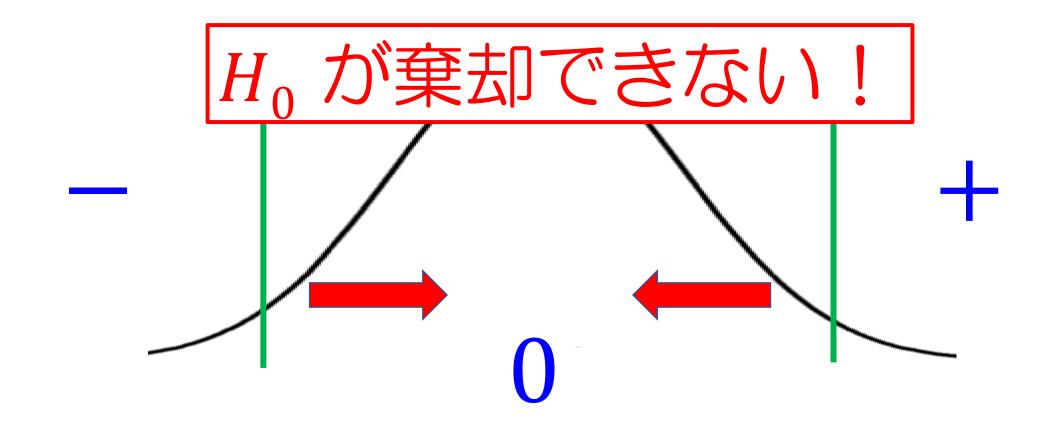
t 検定の流れ

- 1 「両側」か「片側」かを決める
- 2 仮説を立てる (H_0H_1)
- 3 有意水準を決める(普通は0.05)
- 4 t値(絶対値)を求める
- 5 t値の境界値を求める
- 6 t値とt値の境界値から判断する

t-検定: 等分散を仮定した 2 標本による検定		
	変数 1	変数 2
平均	19.71428571	19.18571429
分散	9.381428571	9.631428571
観測数	7	7
プールされた分散	9.506428571	
仮説平均との差異	0	
自由度	12	
t	0.320722192	
P(T<=t) 片側	0.376968679	
t 境界值 片側	1.782287556	
P(T<=t) 両側	0.753937358	
t 境界值 両側	2.17881283	

「t値の境界値」

t値が、境界値より小さい(内側)



「t値とt値の境界値」の比較

t値の境界値と比べて

t値(絶対値)が小さい

H₀:遅延時間に差はない ←棄却できない!

H₁:遅延時間に差がある

遅延時間に差があるとは言い切れない!

t-検定: 等分散を仮定した 2 標本による検定		
	変数 1	変数 2
平均	19.71428571	19.18571429
分散	9.381428571	9.631428571
観測数	7	7
プールされた分散	9.506428571	
仮説平均との差異	0	
自由度 ~ 一〇〇5	12	
$\alpha = 0.05$	0.320722192	
P(T<=t) 片側	0.376968679	
t 境界値 片側	1.782287556	
P(T<=t) 両側	0.753937358	
t 境界値 両側	2.17881283	

「P(T<=t)片側とα値」の比較

「P(T<=t) 片側」のほうが α値(有意水準)より大きい

 H_0 : 遅延時間に差はない \leftarrow 棄却できない!

H₁:遅延時間に差がある

遅延時間に差があるとは言い切れない!

もし、F検定の結果が

「等分散でない」だったら

どうしよう?

そんなの簡単!

「対応のあるデータ」

「t検定:分散が等しくないと仮定~」

をやればいいだけ!!

分散が等しくないパターン

問題やってみよう!!

「並ぶ人数の調査」を行いました。

アトラクションの人気に差があると

言えるのは?

タワー・オブ・テラー 73 94 89 92 49 28 99 75 9 79 31 スチールドラゴン 33 22 43 30 33 63 46 57 25 ハリウッド・ドリーム 61 60 67 79 50 60 79 75 55 67 69 41

前回の流れに追加の新しい考え

1 「対応のあるデータ」か「対応のないデータ」か

2 片側検定の大小の判断

「片側検定の大小の判断」

 H_0 : AとBの平均は等しい H_1 : Aの方がBより平均が大きい

 H_0 : AとBの平均は等しい H_1 : Aの方がBより平均が小さい

の2つの仮説パターンが立てられる

例えば

「日給が30000円と仮定」 (H_0) すると 対立仮説 (H_1) は3通りできる

- 1 日給は30000円でない
- 2 日給は30000円より少ない
- 3 日給は30000円より多い

「片側検定の大小の判断」

H₀: 日給は30000円であるH₁: 日給は30000円より大きい

H₀: 日給は30000円である H₁: 日給は30000円より小さい

の2つの仮説パターンが立てられる

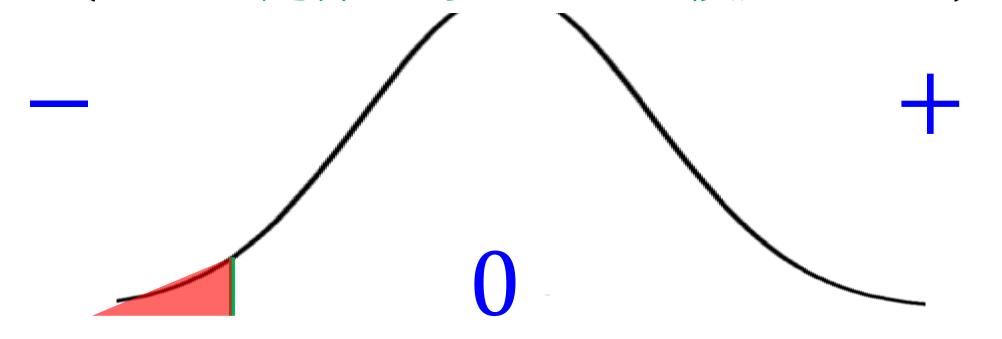
日給は30000円でない 「両側検定」 これが「両側検定」 どっちに入ってもいい (多い少ないは全く考えない)

「片側検定」 2 日給は30000円より少ない

これが「片側検定」

マイナスの領域に入ればいい

(大小の関係があることを検定したい)

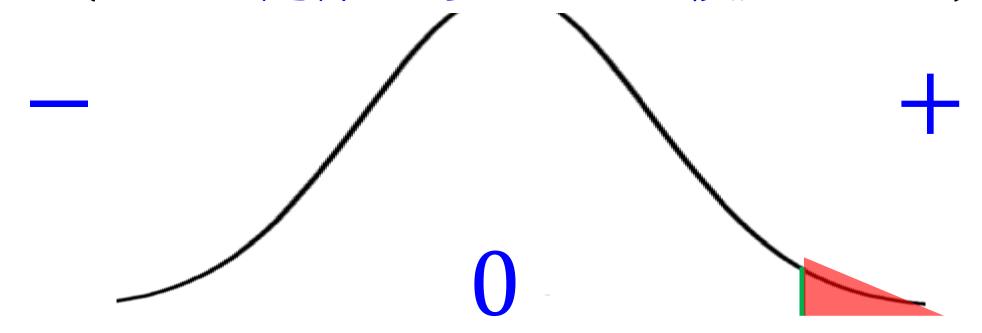


「片側検定」 3 日給は30000円より多い

これが「片側検定」

プラスの領域に入ればいい

(大小の関係があることを検定したい)



一緒にやってみよう

- ・「性別」と「自宅か下宿」
- 「性別」と「本」

有意にどんな差があるのか?

一緒にやってみよう

- 「性別」と「自宅か下宿」
- ・「性別」と「本」

有意にどんな差があるのか?

まずは、F検定

「性別」と「自宅か下宿」のF検定

F-検定: 2 標	本を使った分散の検定		
		変数 1	変数 2
平均		1.515	1.52
分散	$\alpha = 0.05$	0.251030151	0.250854
観測数	$\alpha - 0.00$	200	200
自由度		199	199
観測された分	分散比	1.000701122	
P(F<=f) 片似	則	0.498030298	
F 境界値 片側	則	1.263340341	

この2つは等分散であると言える

- 1 「両側」か「片側」かを決める
- 2 仮説を立てる (H_0H_1)
- 3 有意水準を決める (普通は0.05)
- 4 t値(絶対値)を求める
- 5 t値の境界値を求める
- 6 t値とt値の境界値から判断する

今回は「性別と住居はどんな関係かの検定」

「片側検定」

- 1 「両側」か「片側」かを決める
- 2 仮説を立てる (H_0H_1)
- 3 有意水準を決める(普通は0.05)
- 4 t値(絶対値)を求める
- 5 t値の境界値を求める
- 6 t値とt値の境界値から判断する

H₀: 男性と女性の住居の平均は等しい

 H_1 : 男性の方が女性より平均が大きい

つまり、男性の方が「下宿が多い」

H₀: 男性と女性の住居の平均は等しい

H₁: 男性の方が女性より平均が小さい

つまり、男性の方が「実家が多い」

- 1 「両側」か「片側」かを決める
- 2 仮説を立てる (H_0H_1)
- 3 有意水準を決める(普通は0.05)
- 4 t値(絶対値)を求める
- 5 t値の境界値を求める
- 6 t値とt値の境界値から判断する

「性別」と「自宅か下宿」のt検定

t-検定: 等分散を仮定した 2 標本による検定		
	変数 1	変数 2
平均	1.608247423	1.436893204
分散	0.240764605	0.248429469
観測数	97	103
プールされた分散	0.244713171	
仮説平均との差異	0	
自由度	198	
t	2.44824914	
P(T<=t) 片側	0.007612973	
t 境界值 片側	1.652585784	
P(T<=t) 両側	0.015225946	
t 境界値 両側	1.972017478	

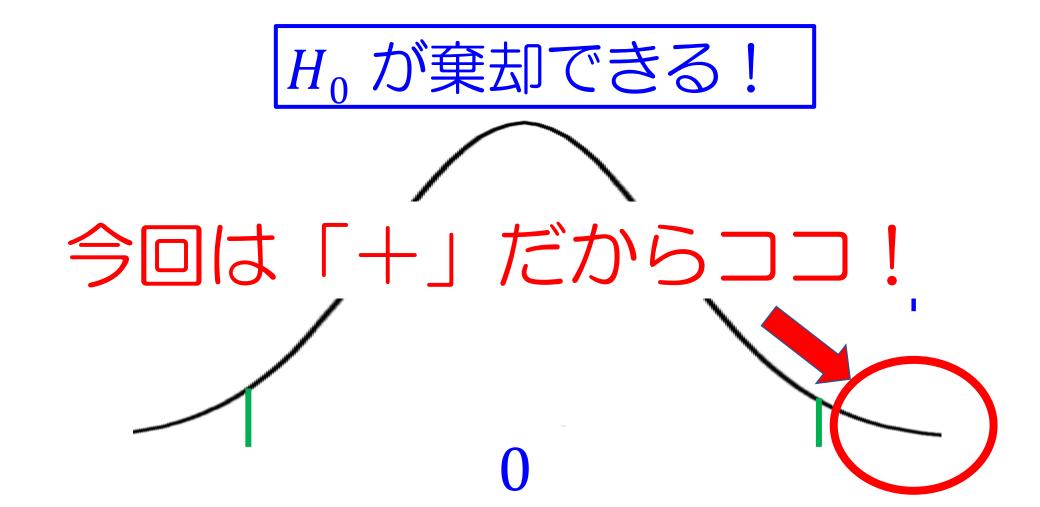
- 1 「両側」か「片側」かを決める
- 2 仮説を立てる (H_0H_1)
- 3 有意水準を決める(普通は0.05)
- 4 t値(絶対値)を求める
- 5 t値の境界値を求める
- 6 t値とt値の境界値から判断する

「性別」と「自宅か下宿」のは検定

t-検定: 等分散を仮定した 2 標本による検定		
	変数 1	変数 2
平均	1.608247423	1.436893204
分散	0.240764605	0.248429469
観測数	97	103
プールされた分散	0.244713171	
仮説平均との差異	0	
自由度	198	
t	2.44824914	
P(T<=t) 片側	0.007612973	
t 境界值 片側	1.652585784	
P(T<=t) 両側	0.015225946	
t 境界値 両側	1.972017478	

「t値の境界値」

これより外側 (絶対値が大きい)



H₀: 男性と女性の住居の平均は等しい

 H_1 : 男性の方が女性より平均が大きい

つまり、男性の方が「下宿が多い」

H₀: 男性と女性の住居の平均は等しい

H₁: 男性の方が女性より平均が小さい

つまり、男性の方が「実家が多い」

 H_1 : 男性の方が女性より平均が大きい

「検定結果」

男性の方が「下宿が多い」 女性の方が「実家が多い」

一緒にやってみよう

- ・「性別」と「自宅か下宿」
- 「性別」と「本」

有意にどんな差があるのか?

まずは、F検定

「性別」と「本」のF検定

F-検定: 2 標	本を使った分散の検定		
		変数 1	変数 2
平均		1.515	1.565
分散		0.251030151	0.24701
観測数	$\alpha = 0.05$	200	200
自由度		199	199
観測された	分散比	1.016275048	
P(F<=f) 片側		0.454727421	
F 境界值 片側		1.263340341	

この2つは等分散であると言える

- 1 「両側」か「片側」かを決める
- 2 仮説を立てる (H_0H_1)
- 3 有意水準を決める (普通は0.05)
- 4 t値(絶対値)を求める
- 5 t値の境界値を求める
- 6 t値とt値の境界値から判断する

今回は「性別と本はどんな関係かの検定」

「片側検定」

- 1 「両側」か「片側」かを決める
- 2 仮説を立てる (H_0H_1)
- 3 有意水準を決める(普通は0.05)
- 4 t値(絶対値)を求める
- 5 t値の境界値を求める
- 6 t値とt値の境界値から判断する

H₀:男性と女性の本の平均は等しい

 H_1 : 男性の方が女性より平均が大きい

つまり、男性の方が「本を読まない」

H₀:男性と女性の本の平均は等しい

H₁:男性の方が女性より平均が小さい

つまり、男性の方が「本を読む」

- 1 「両側」か「片側」かを決める
- 2 仮説を立てる (H_0H_1)
- 3 有意水準を決める(普通は0.05)
- 4 t値(絶対値)を求める
- 5 t値の境界値を求める
- 6 t値とt値の境界値から判断する

「性別」と「本」のt検定

t-検定: 等分散を仮定した 2 標本による検定		
	変数 1	変数 2
平均	1.484536082	1.640776699
分散	0.252362543	0.232438607
観測数	97	103
プールされた分散	0.242098697	
仮説平均との差異	0	
自由度	198	
t	-2.244332507	
P(T<=t) 片側	0.01295881	
t 境界值 片側	1.652585784	
P(T<=t) 両側	0.02591762	
t 境界値 両側	1.972017478	

- 1 「両側」か「片側」かを決める
- 2 仮説を立てる (H_0H_1)
- 3 有意水準を決める(普通は0.05)
- 4 t値(絶対値)を求める
- 5 t値の境界値を求める
- 6 t値とt値の境界値から判断する

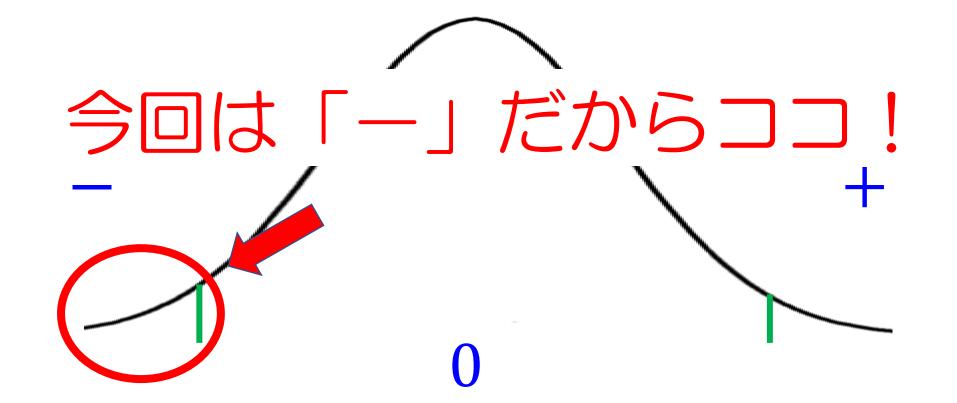
「性別」と「本」のt検定

t-検定: 等分散を仮定した 2 標本による検定		
	変数 1	変数 2
平均	1.484536082	1.640776699
分散	0.252362543	0.232438607
観測数	97	103
プールされた分散	0.242098697	
仮説平均との差異	0	
自由度	198	
t	-2.244332507	
P(T<=t) 片側	0.01295881	
t 境界值 片側	1.652585784	
P(T<=t) 両側	0.02591762	
t 境界値 両側	1.972017478	

「t値の境界値」

これより外側 (絶対値が大きい)

H₀が棄却できる!



H₀:男性と女性の本の平均は等しい

 H_1 : 男性の方が女性より平均が大きい

つまり、男性の方が「本を読まない」

H₀:男性と女性の本の平均は等しい

H₁:男性の方が女性より平均が小さい

つまり、男性の方が「本を読む」

「検定結果」つまり、

男性の方が「本を3冊以上読む」
女性の方が「本を3冊以上読まない」

 H_1 : 男性の方が女性より平均が小さい